
Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 1

xDyson School of Design Engineering

Imperial College London

DE2 Electronics 2

Lab Experiment 4: IMU and OLED Display

(webpage: http://www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/)		

Objectives

By the end of this experiment, you should have achieved the following:

• Learned how to use accelerometer and gyroscope to derive orientation.
• Combine these readings to get reliable pit and roll angles.
• Control the PyBench board in Python without Matlab.
• Use the OLED display to show messages and graphics.
• Learn to use the 5k ohm potentiometer as input.

Before you start this Lab, download from the course webpage lab4.zip and put these files in the Lab 4 folder.
You will need these Matlab scripts written specifically for this Lab. Make sure that the Lab 4 folder is your
current Matlab folder. I also provide solutions to Lab 4 in case you are stuck. However, I strong recommend
that you TYPE IN the Matlab code yourself so that you have a chance to thing about each line of the code.

Task 1: The Inertia Measurement Unit (IMU)

In this experiment, you will learn to use the accelerometer, then the gyroscope, to derive the pitch and roll
angle of the PyBench board. The IMU we use is MPU6050 by InvenSense. When you are using Matlab with
the PyBench class library (in pybench.m), you should use the Matlab functions:

[p, r] = pb.get_accel(); % p, r = pitch & roll angle in radians
[x, y, z] = pb.get_gyro(); % x, y, z = rate of rotation in 3-axes in rad/sec

These functions return angles or angular velocities in radians or radians/sec, not in degrees!

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 2

• Create the following Matlab code as the file: lab4task1a.m and check that your IMU on your board
works correctly. Make sure that you understand the Matlab code and how it works.

• Rotate the PyBench board along the horizontal axis towards you and away from you to change the
pitch angle. (Which direction is positive?)

• Rotate the PyBench board along the vertical axis to your left and to your right. (Effectively rocking
it side-to-side.) You are changing the roll angle. (Which direction is positive?)

• Now slide to PyBench board forward and back (as if you are driving the board on a vehicle) while
rotating. What happens?

• Remember to record your results and reflections in your electronic Logbook.

Lines 5: Use ‘COMx’ for PCs if
needed.
Line 7: Define range of x-axis, 10
seconds for now. Update later.

Line 12: Fix axis scaling between ±90.
16: Overlay plotting on same axes
scaling.

17: Define start time.

20: Get pitch & roll angles.
21: Get time point reading.

24, 25: Plot two points only.
26: Pause for 1ms, needed by Matlab
plot function (not sure why).

28: update end_time.

NOTE: This Matlab script runs in an infinite loop due to the “while true” statement. To stop Matlab
running to gain back control, you can type CTRL-C in the Command Window of Matlab.

Key understanding: Accelerometer provides roll and pitch angles through measuring the forces in the x
and y directions due to gravity. If the accelerometer is also in motion, the movement adds extra forces to
the sensor on top of the gravitational force. Therefore, the pitch and roll angles measured by the
accelerometer is “noisy” if there is motion. You should be able to detect this from the graph.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 3

Now we will learn to use the gyroscope to derive the pitch and roll angles. Enter the following code as a
new Matlab script: lab4task1b.m.

Deriving the angles from rate of change in angles (which is what the gyro gives us) is somewhat more
involved. We need to perform this calculation: 𝛿𝜃 = �̇� × 𝛿𝑡 where �̇� is the gyro reading and 𝛿𝑡 is the time
increment since the last reading.
The explanation for the code, in addition to that from Task 1a, is as follows:

Line 8: Initialize gyro angles to
zero for x and y. gy is pitch
angle, gx is roll angle.

22: take gyro reading in
rad/sec on all axes.
23 & 24: toc will now provide
incremental time 𝛿𝑡 since last
tic.

26 & 27: Accumulate gx and gy,
and limit this to ±p/2. These
two lines teaches you how to
perform integration through
summation in a processor.

Key understanding: You can also derive the pitch and roll angle using the gyroscope readings. However,
due to integration process (i.e. to get angle, you integrate or accumulate �̇� × 𝛿𝑡 over time) results in high
drift because any errors in the reading get accumulated. So, accelerometer gives noisy readings, while
gyroscope gives low noise readings, but introduces offset that increases over time.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 4

Task 2: Visualization in 3D

Plotting graphs, while useful, does not provide a good way to visualize exactly what is going on with an
object when you rotate it about two orthogonal axes. For that, one needs a 3D model.

I have written a Matlab class: IMU_3D.m (download from course webpage as zipped file) which displays
the IMU module (and the PyBench board) as a 3-D object. Further, you will need to install the Aerospace
Toolbox for Matlab. To do that, you go to Matlab HOME tab, and click the Add-Ons ICON and follow the
instructions.

Enter the Matlab code is as shown
below as lab4task2.m. Try and test this
yourself.

Line 6: Create a 3D object “model”
using the IMU_3D class library.

10: Create a figure object fig1 used by
IMU_3D.

23, 25: Draw the 3D object at the
specified pitch and roll angles, and the
specified title for the plots.

Explore what happens when you rotate
the PyBench board on the x and y axes,
and when you shake the board forward
and backward.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 5

Task 3: Combining the two measurements using Complementary Filter

I hope you are now convinced that accelerometer provides angle measurements that are noisy but with no
offset (or time dependent drift). Gyroscope provides angle measurements through numeric integration (or
summation) that is not noisy but suffers from error accumulation and therefore time dependent drift. So,
how can we combine these two sets of readings together to give us better measurements?

There is an excellent article by Shane Colton entitled “The Balance Filter” (see course webpage) that
explains how to do this easily. The basic idea can be understood by referring to the conceptual diagram
below.

Since the accelerometer angles are “noisy”, we can reduce the noise using a lowpass filter, which has a
smoothing effect. (This is just like our familiar RC circuit which passes low frequencies but suppresses high
frequency components). Exactly WHY this implements a lowpass filter will be explained in a later lecture.

The gyro readings are rates of change in angle. We use numerical integration to estimate the angles.
However, this produces dc offset error as drift. To mitigate this error, we pass the gyro data through a
highpass filter to reduce the dc error.

The system that processes the accelerometer and gyroscope readings to yield an angle is known as
Complementary Filter. It can be implemented using the following mathematical formula:

 angle 𝜃!"# = 	𝛼	 ×)		𝜃$%& +	 	𝜃	̇ 𝑑𝑡, + (1 − 𝛼) 	× 	𝜌

where a = scaling factor chosen by users and is typically between 0.7 and 0.98
 𝜌 = accelerometer angle
 𝜃!"# = new output angle
 𝜃$%& = previous output angle
 �̇� = gyroscope reading of the rate of change in angle

dt = time interval between gyro readings

Modify the code from Task 2 (as lab4task3.m) to compute the complementary filtered pitch and roll angles.
Add a third plot (in addition to the previous two 3D plots) to show how the combined pitch and roll angles
manifest themselves with the 3D model of the IMU.

If this is taking you too long to do independently yourself, the solution is given in the Appendix.

Make sure that you fully understand what is happening. I will also go through the theory and the Matlab
code during a tutorial session.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 6

How to run PyBench Board without Matlab or Laptop?

So far, you have been using the PyBench board via Matlab. For the rest of this experiment, you will switch
to using MicroPython (uPy) running on the Microcontroller module (called the Pyboard, which is NOT the
Raspberry Pi, but one that runs MicroPython after power is applied). In this task, you will start writing your
own uPy programs that run on PyBench without tethering to your laptop. Instead, you will be creating a
stand-alone system that can run on battery.

Put the 3-way DIP Switch setting to ‘000’, and reset the Pyboard (pressing the left button on the Board). In
this setting, the Pyboard will be running the program “user.py” stored on the SD Card. On booting up,
PyBench will run the program boot.py, which will immediately execute the file main.py. “main.py” will
check the configuration switches. Since it is set to ‘000’, it will execute the file user.py. For now, user.py
is “empty” in that it only contains a message. If you want to run your own uPy script, say, my_prog.py, you
are recommended to create my_prog.py independently using a suitable editor and then modify user.py to
include the MicroPython specific function: execfile(“my_prog.py”).

These steps are depicted in the diagram below.

You are strongly advised to use VSCode as your uPy editor. If you do not have VSCode installed, you must
first install this on your laptop. Assuming that you have my_prog.py created, and user.py modified as
explained above, you can run my_prog.py by:

1. Make sure that the Pybench board is connected to your laptop using a USB cable. This provides
both power to the hardware and allows communication between your laptop and hardware.

2. Set the DIP switches to 000 and press RESET button (left). This forces the Pyboard to do through
the steps shown above.

3. Create your program using VSCode, either on your laptop disk or directly on the MicroSD card in
the Pybench board. If you edit your uPy script on your computer, remember to copy it to the
MicroSD card. If you edit your script directly on the SD card, remember to make a backup copy on
your computer.

Running MicroPython via a terminal program

This part is different depending on whether you are using a Windows PC or a MacBook.

For MacBook Users

• Open the Terminal App and enter:

screen /dev/tty.usb* 115200

• You should now be communicating with uPy and you should see a message on the terminal screen.

• Alternative, you may also start the terminal from VSCode.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 7

For Windows PC Users

• Your Pybench hardware will appear as a USB disk and as device
connect to one of the COM port as COMx, where x is a number
which may change each time you connect.

• You can find out which COM port you should use by examining
the Device Manager. You should see this under Ports. If you
don’t know how to do this, ask one of the GTAs.

• Install PuTTY program allows you to create a terminal to the
USB port. The link to install this is:
https://the.earth.li/~sgtatham/putty/latest/w64/putty-64bit-
0.76-installer.msi . You can find this on the course webpage.

• Run PuTTY and select serial port as shown above (as an
example).

Using MicroPython

When you are communicating with uPy using via either Terminal or PuTTY, you are controlling the Pybench
hardware directly via the computer keyboard. Here are two most important keys:

CTRL-C: This interrupts the processor and returns the user to the Python REPL >>>. Now you can enter
any uPy commands.

CTRL-D: Soft RESET – this forces the processor to go through the sequence as if you turned the power
OFF and then ON.

IMPORTANT: The RED LED on the Pyboard will blink during SD Card read or write. If you pull the USB cable
off when the computer is accessing the SD Card, you can corrupt its contents. The only way to recover
would be to download all your files to the SD Card again.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 8

Task 4: Using the OLED driver on the PyBench Board

Create user.py that contains only one line: execfile(“lab4task4.py”). This statement searches in the SD
card for the uPy program lab4task4.py, and execute this. In this way, you can easily run other uPy program
by simply replacing the filename in between the quotations with any user program. execfile() is
MicroPython specific function not found in standard Python 3.

Use an editor to create the file: lab4task.py on the
SD Card with the following code.

Line 1: Specify a block of comments.
10: Use OLED driver.

14: 5K potentiometer connected to pin X11.
17: Create OLED display object. 128 x 64 pixels.

19: Turn display ON

20: Initialise display
23: Draw hello world. (0, 0) is top left corner. Each
character is 6 x 8 pixels including space.

25: Record start time in msec.

28: Record time up to now.
33: Generate a random number and force this to the
range 0 to 999.

This program teaches you various aspects of
MicroPython and the OLED driver that will be
useful to you throughout the rest of the module.
The OLED driver, which is in the file: oled_938.py
on the SD card, has the following methods (shaded
ones are used in this exercise):

Method Description
oled.clear() Clear display (i.e. blank)
oled.display() Update display with content of buffer. Must call after drawing to see

effect
oled.set_pixel(x,y,c) Turn pixel (x,y) ON (c=1) or OFF (c=0). (0, 0) is top RIGHT corner.
oled.init_display() Initialise display. Call once at the start.
oled.poweron() Turn on the power to the display. Call once at the start.
oled.draw_text(x,y,s) Draw the text string s at (x, y). (0,0) is top LEFT corner.
oled.draw_circle(x,y,r,c) Draw a circle of radius r (in pixels), colour c (ON=1, OFF=0)
oled.draw_square(x,y,s,c) Draw a square of side s and colour c.
oled.draw_line(xa,ya,xb,yb,c) Draw a line from (xa, ya) to (xb, yb) in colour c.
oled.line(x,y,phi,d,c) Draw a line of length d from (x,y) at angle phi in degrees in colour c. Phi is

the angle relative to

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 9

This program does the following:

1. Create a random number between 0 and 999 using Pyboard’s hardware random number
generator (with pyb.rng()). This is a 30-bit integer – very big! The ‘%’ or modulo operator limits
the variable “delay” to be within the desired range. (modulo operates give you the remainder.)

2. Use pyb.millis() to record time in millisecond as tic and toc (as in Matlab). In this way, we can
measure elapsed time (from tic to toc).

3. Measure the voltage at the potentiometer, which is connected to pin ‘X11’. The voltage range is 0
to 3.3V (as usual for this board). This voltage is converted by the ADC on the ARM chip and
produces a 12-bit result from 0 to 4095.

4. Use the “oled.draw_text(.)” method to write text to the OLED display. Lines 29 and 30 shows you
how to use the .format(v) method to create a string including a formatted variable v – very useful
later.

Run and test this program. Make sure that you understand the code.

Now modify the program so that “Hello World!” is at the centre of the display. (Remember that each
character is 6 x 8 pixels including a 1-pixel gap on the right and bottom.)

Additional Challenge (Optional):

In addition to drawing text on the OLED display, you can also draw lines or any arbitrary figure on the
display. Use oled.draw_line(.) method to draw a “pendulum” whose angle (relative to vertical) is
determined by the reading from the 5k ohm potentiometer. If the reading is 0, the pendulum should be
+90 degrees (to the right of vertical) and if the reading is 4095, the pendulum should be -90 degrees.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 10

Task 5: Using the IMU driver on PyBench Board

An IMU driver (file: mpu6050.py on the SD cared), written in MicroPython, is available to read information
from the IMU. Before using the IMU, you need to create the IMU object with:

imu = MPU6050(1, False)

Thereafter, you can use the following methods to read accelerometer and gyroscope data.

Method Description
pitch = imu.pitch() Returns the pitch angle in degrees.
roll = imu.roll() Returns the roll angle in degrees.
gy_dot = imu.get_gy() Returns d(pitch)/dt in degrees/sec.
gx_dot = imu.get_gx() Returns d(roll)/dt in degrees/sec.
Imu.get_acc() Returns accelerometer angles in x, y, z directions in radians.
Imu.get_gyro() Returns gyroscope reading in x, y, z directions in radians/sec.

Write a Python program lab4task5.py that reads the pitch angle and the rate of pitch (gy_dot) and display
these values on the OLED display as text in an infinite loop.

Additional Challenge (Optional):

Use the oled.draw_line (.) method, draw two separate pendulum lines, one for the pitch angle measured
using the accelerometer and a second one for the pitch angle derived by the gyroscope.

Further Challenge (Optional):

Use complementary filter and combine the two readings (accelerometer and gyroscope). Plot the
pendulum lines, one showing accelerometer pitch angle, and another showing the filtered pitch angle. This
is the same as the second self-test provided to you when you have the setting at 110.

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 11

Appendix A: Model Answers for lab4task3.m

Lab 4: IMU and OLED Display Imperial College London

V3.4 - PYK Cheung, 20 Feb 2025 Lab 4 - 12

Appendix B: Model answer for lab4task5.py

